Notes

By Owen Fuller
Based on

1 Introduction

2 Conditional Probability

Tower Property: For X and Y random variables

$$
E[E(X \mid Y)]=E(X)
$$

Or

$$
E[E(X \mid Y)]= \begin{cases}\sum_{y \in S} E(X \mid Y=y) p_{Y}(y) & \text { if } Y \text { is discrete } \\ \int_{-\infty}^{\infty} E(X \mid Y=y) f_{Y}(y) d y & \text { if } Y \text { is continuous }\end{cases}
$$

3 Stochastic Processes and Discrete Time Markov Chains

Stochastic Process A stochastic process $\left(X_{t}\right)_{t \in T}$ is an indexed collection of random variables. Set T is the index set, in general interpreted as time, and X_{t} is the state of the system at time t. The set S of all possible states is referred as the state space of the process.
Definition: Given that we start at i, the probability of ever reaching state j (after finite steps) is

$$
\varrho_{i j}=P\left(T_{j}<\infty \mid X_{0}=i\right)=\sum_{n=1}^{\infty} P\left(T_{j}=n \mid X_{0}=i\right)
$$

Recurrent: if $\varrho_{i i}=1 \|$ iff $\sum_{n=0}^{\infty} p_{i i}^{(n)}=\infty$
Transient: if $\varrho_{i i}<1$
Definition: $m_{i i}$ is the mean time to return to state i

$$
m_{i j}=E\left(T_{j} \mid X_{0}=i\right)
$$

Definition: The mean proportion of time spent in state j when starting from i.

$$
p_{i j}^{*}=\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{n=0}^{n} p_{i j}^{(n)}
$$

Null Recurrent: when $m_{i i}=\infty$
Positive Recurrent: when $m_{i i}<\infty \|$ recurrent state is positive recurrent iff $p_{i j}^{*}=\frac{1}{m_{i i}}>0$. If $i \leftrightarrow j$ then either i and j are both positive recurrent or both null recurrent.

Exponential Random Variable

Cumulative Distribution Function:

$$
P(X \leq x)=F(x)=1-e^{-\lambda x}
$$

Density:

$$
\begin{aligned}
& f(x)=\lambda e^{-\lambda x} \\
& E\left(X^{r}\right)=\frac{r!}{\lambda^{r}}
\end{aligned}
$$

Memoryless Property: Exponential distribution has a memoryless propety, where for real numbers s, t

$$
P(X>s+t \mid X>s)=\frac{X>s+t, X>s}{P(X>s)}=\frac{e^{-\lambda(s+t)}}{e^{-\lambda s}}=e^{-\lambda t}=P(X>t)
$$

Strong Memoryless Property: if X_{2} is an exponential random variable with rate λ and X_{1} is an independent non-negative continuous random variable, then for any $x \geq 0$

$$
P\left(X_{2}>X_{1}+x \mid X_{2}>X_{1}\right)=P\left(X_{2}>x\right)=e^{-\lambda x}
$$

Sums of Exponentials: if $Z=X_{1}+X_{2}+\ldots+X_{n}$, where $X_{i} \sim \exp (\lambda)$ for all i and independent, then Z is called the gamma (n, λ) random variable and its density function is

$$
f_{n}(z)=\lambda e^{-\lambda z} \frac{(\lambda z)^{n-1}}{(n-1)!}
$$

Poisson Processes

Poisson Process: Let τ_{i} be an independent exponential (λ) random variables, $S_{0}=0, S_{n}=$ $\tau_{1}+\ldots+\tau_{n}$ and $N_{t}=\max \left\{n \geq 0: S_{n} \leq t\right\}$. Then $\left(N_{t}\right)_{t \in \mathbb{R} \geq 0}$ is a Poisson Process with rate parameter λ, or $\operatorname{PP}(\lambda)$. With distribution of rate λt

$$
P\left(N_{t}=k\right)=\frac{e^{-\lambda t}(\lambda t)^{k}}{k!}
$$

Future Events: A PP (λ) counts the events starting from time 0 . Suppose we reset the counter at time s and start counting the future events, define this as

$$
N_{t}^{(s)}=N_{s+t}-N_{s} \quad \text { for all } t \geq 0
$$

Where $\left(N_{t}^{(s)}\right)_{t \geq 0}$ is a $\operatorname{PP}(\lambda)$ and it is dependent of $\left(N_{u}\right)_{0 \leq u \leq s}$

Stationary Increments: A process $\left(N_{t}\right)_{t \geq 0}$ is said to have stationary increments if $N_{s+t}-N_{s}$ is identically distributed for all s, i.e. the distribution does not depend on s.
Independent Increments: A process $\left(N_{t}\right)_{t \geq 0}$ has independent increments if $N_{s_{1}+t_{1}}-N_{s_{1}}$ and $N_{s_{2}+t_{2}}-N_{s_{2}}$ are independent if $\left(s_{1}, s_{1}+t_{1}\right] \cap\left(s_{2}, s_{2}+t_{2}\right]=\emptyset$.

So $\left(N_{t}\right)_{t>0}$ is a $\operatorname{PP}(\lambda)$ iff:

1. It has stationary and independent increments
2. N_{t} is Poisson (λt) random variable for all t.

Little o: A function $f(x)$ is $o(x)$ if $\lim _{x \rightarrow 0} \frac{f(x)}{x}=0$.
So $\left(N_{t}\right)_{t \geq 0}$ is a $\operatorname{PP}(\lambda)$ iff:

1. It has stationary and independent increments
2.

$$
\begin{aligned}
& P\left(N_{h}=0\right)=1-\lambda h+o(h) \\
& P\left(N_{h}=1\right)=\lambda h+o(h) \\
& P\left(N_{h} \geq 2\right)=o(h)
\end{aligned}
$$

Superpositioning and Splitting

Campbell's Theorem

Looknig at a single arrival, ask if it occured before time s, with $s \leq t$:

$$
P\left(S_{1} \leq s \mid N_{t}=1\right)=\frac{s}{t}
$$

In general, the probability of k events happened before time s with the condition that n events happened till time t

$$
P\left(N_{s}=k \mid N_{t}=n\right)=\binom{n}{k}\left(\frac{s}{t}\right)^{k}\left(1-\frac{s}{t}\right)^{n-k}
$$

Campbell's Theorem: Let S_{n} be the even times for a PP. If $N_{t}=n$ is given then the vector $\left(S_{1}, S_{2}, \ldots, S_{n}\right)$ follows the distribution of ordered independent uniform variables $\left(U_{(1)}, U_{(2)}, \ldots, U_{(n)}\right)$. Consequently, the unordered set of arrival times $\left\{S_{1}, \ldots, S_{n}\right\}$ has the same distribution as $\left\{U_{1}, \ldots, U_{n}\right\}$.

Nonhomogeneous Poisson Process

Counting Process: A counting process $\left(N_{t}\right)_{t \geq 0}$ is a nonhomogeneous PP if

1. It has independent increments
2.

$$
\begin{aligned}
& P\left(N_{t+h}-N_{t}=0\right)=1-\lambda(t) h+o(h) \\
& P\left(N_{t+h}-N_{t}=1\right)=\lambda(t) h+o(h) \\
& P\left(N_{t+h}-N_{t} \geq 2\right)=o(h)
\end{aligned}
$$

Nonhomogeneous Poisson Process: Define

$$
\Lambda(t)=\int_{0}^{t} \lambda(u) d u
$$

Then N_{t} is a Poisson $\Lambda(t)$ random variable for any t.
$N_{t}-N_{s}$ is a Poisson random variable with parameter $\Lambda(t)-\Lambda(s)=\int_{s}^{t} \lambda(u) d u$.
The superpositioning and splitting properties are true for nonhomogeneous Poisson processes as well.

Event Times for Nonhomogeneous PP: Gives a binomial with n trials and a success probability of $\Lambda(s) / \Lambda(t)$.

$$
P\left(N_{s}=k \mid N_{t}=n\right)=\binom{n}{k}\left(\frac{\Lambda(s)}{\Lambda(t)}\right)^{k}\left(1-\frac{\Lambda(s)}{\Lambda(t)}\right)^{n-k}
$$

Compound Poisson Processes

Suppose events occur according to a non-homogeneous $\operatorname{PP}(\lambda(t))$. When event n occurs we incur a random cost of Y_{n}, which is independent and identically distributed for all n. Then the total cost incurred up to time t is given by

$$
Z_{t}=\sum_{n=1}^{N_{t}} Y_{n}
$$

and $\left(Z_{t}\right)_{t \geq 0}$ is a Compound Poisson Process with

$$
\begin{gathered}
E\left(Z_{t}\right)=\Lambda(t) E\left(Y_{1}\right) \\
\operatorname{Var}\left(Z_{t}\right)=\Lambda(t) E\left(Y_{1}^{2}\right)
\end{gathered}
$$

Continuous Time Markov Chains

CTMC: The continuous time stochastic process $\left(X_{t}\right)_{t \geq 0}$ is called a CTMC if:

1. Each duration τ_{n} is an exponential random variable with rate $q_{i}>0$ which depends only on state $\tilde{X}_{n-1}=i$ the process leaves
2. The corresponding (embedded) discrete time process $\left(\tilde{X}_{n}\right)_{n \in \mathbb{N}}$ is a DTMC with $\tilde{p}_{i i}=0$ for all i.

Markov: A continuous time process $\left(X_{t}\right)_{t \geq 0}$ has the Markov property if for any $0 \leq s_{0}<s_{1}<$ $\ldots<s_{n}<s$, any $t \geq 0$ and any possible states $i_{0}, \ldots, i_{n}, i, j$ we have:

$$
P\left(X_{s+t}=j \mid X_{s}=i, X_{s_{n}}=i_{n}, \ldots, X_{s_{0}}=i_{0}\right)=P\left(X_{s+t}=j \mid X_{s}=i\right)
$$

Rate Matrix: or generator Q of the CTMV $\left(X_{t}\right)_{t \geq 0}$ is defined through its elements

$$
\begin{gathered}
q_{i j}=q_{i} \tilde{p}_{i j}, \text { if } i \neq j \\
q_{i i}=-q_{i}=-\sum_{j \in S, j \neq i} q_{i j}
\end{gathered}
$$

Here $q_{i j}$ is the jump rate from i to j.

Transition Matrix:

$$
p_{i j}(t)=P\left(X_{t}=j \mid X_{0}=i\right)
$$

Initial Distribution:

$$
a_{i}^{(0)}=P\left(X_{0}=i\right)
$$

$P(t)$ has the following properties

1. $p_{i j}(t) \geq 0$
2. $\sum_{j \in S} p_{i j}(t)=1$ for all $t \geq 0$
3. (Chapman-Kolmogorov Equations) $P(t+s)=P(t) P(s)$, that is $p_{i j}(t+s)=\sum_{k \in S} p_{i k}(t) p_{k j}(s)$

Theorem: $P^{\prime}(0)=Q$, that is

$$
p_{i i}^{\prime}(0)=-q_{i}=q_{i i} \quad, \quad p_{i j}^{\prime}(0)=q_{i j} \quad \text { for } i \neq j
$$

Backward and Forward Equations

Let $P(t)$ be the transition matrix and Q be the generator of a CTMC. Then $P(t)$ is the unique solution of both the forward and backward Kolmogrov equation with initial conditions

$$
P(0)=\hat{1} \quad \text { that is } \quad p_{i i}(0)=1, p_{i j}(0)=0 \text { for } j \neq i
$$

Forward Kolmogrov Equation:

$$
P^{\prime}(t)=P(t) Q \quad \text { that is } p_{i j}^{\prime}(t)=\sum_{k \in S} p_{i k}(t) q_{k j}
$$

Backward Kolmogrov Equation:

$$
P^{\prime}(t)=Q P(t) \quad \text { that is } p_{i j}^{\prime}(t)=\sum_{k \in S} q_{i k} p_{k j}(t)
$$

Theorem: For finite state spaces the solution of both backward and forward equations is $P(t)=e^{Q t}$.

Transience and Recurrence

Define

$$
\rho_{i j}=P\left(T_{j}<\infty \mid X_{0}=i\right), \quad m_{i j}=E\left(T_{j} \mid X_{0}=i\right)
$$

Then we have: State i is

1. Transient if $\rho_{i i}<1$
2. Null Recurrent if $\rho_{i i}=1$ and $m_{i i}=\infty$
3. Positive Recurrent if $\rho_{i i}=1$ and $m_{i i}<\infty$

Theorem: A state i for a CTMC is recurrent iff the embedded DTMC is recurrent.
Theorem: Let $\left(X_{t}\right)_{t \geq 0}$ be an irreducable CTMC. Suppose $\tilde{\pi}$ is a positive solution $\tilde{\pi}=\tilde{\pi} \tilde{P}$ where \tilde{P} is the transition matrix of the embedded DTMC. Then the CTMC is positive recurrent iff

$$
\sum_{i \in S} \frac{\tilde{\pi}_{i}}{q_{i}}<\infty
$$

Stationary Probabilities

Limiting Distribution: Let $\left(X_{t}\right)_{t \geq 0}$ be an irreducible CTMV with limiting distribution π_{i}. The limiting distribution is the unique stationary distribution, that is the unique solution of the global balance equations

$$
\pi Q=0, \quad \sum_{i \in S} \pi_{i}=1
$$

iff the CTMC is positive recurrent.
Note: the stationary distribution π of a CTMC is different than the stationary distribution $\tilde{\pi}$ of the embedded DTMC.
Theorem: If the detailed balance equations are satisfied, that is

$$
\pi_{i} q_{i j}=\pi_{j} q_{j i} \quad \text { for all } i \neq j, \text { and } \sum_{i} \pi_{i}=1
$$

then also the global balance equations are satisfied, so π is the stationary distribution.

First Passage Properties

Cost and Rewards

Definitions

Examples

Density function: $f(x)$
Distribution of $X: F(x)=P(X \leq x)=\int_{-\infty}^{x} f(x) d x$
Expected value: $E(X)=\int_{-\infty}^{\infty} x f(x) d x$

