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1 Introduction

2 Conditional Probability

Tower Property: For X and Y random variables

E[E(X|Y )] = E(X)

Or

E[E(X|Y )] =

{ ∑
y∈S E(X|Y = y)pY (y) if Y is discrete∫∞
−∞E(X|Y = y)fY (y)dy if Y is continuous

3 Stochastic Processes and Discrete Time Markov

Chains

Stochastic Process A stochastic process (Xt)t∈T is an indexed collection of random variables.
Set T is the index set, in general interpreted as time, and Xt is the state of the system at time
t. The set S of all possible states is referred as the state space of the process.
Definition: Given that we start at i, the probability of ever reaching state j (after finite steps)
is

%ij = P (Tj <∞|X0 = i) =
∞∑
n=1

P (Tj = n|X0 = i)

Recurrent: if %ii = 1 ‖ iff
∑∞

n=0 p
(n)
ii =∞

Transient: if %ii < 1
Definition: mii is the mean time to return to state i

mij = E(Tj |X0 = i)

Definition: The mean proportion of time spent in state j when starting from i.

p∗ij = lim
N→∞

1

N + 1

n∑
n=0

p
(n)
ij

Null Recurrent: when mii =∞
Positive Recurrent: when mii < ∞ ‖ recurrent state is positive recurrent iff p∗ij = 1

mii
> 0.

If i↔ j then either i and j are both positive recurrent or both null recurrent.

Exponential Random Variable

Cumulative Distribution Function:

P (X ≤ x) = F (x) = 1− e−λx

Density:
f(x) = λe−λx

E(Xr) =
r!

λr
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Memoryless Property: Exponential distribution has a memoryless propety, where for real
numbers s, t

P (X > s+ t|X > s) =
X > s+ t,X > s

P (X > s)
=
e−λ(s+t)

e−λs
= e−λt = P (X > t)

Strong Memoryless Property: if X2 is an exponential random variable with rate λ and X1

is an independent non-negative continuous random variable, then for any x ≥ 0

P (X2 > X1 + x|X2 > X1) = P (X2 > x) = e−λx

Sums of Exponentials: if Z = X1+X2+. . .+Xn, whereXi ∼ exp(λ) for all i and independent,
then Z is called the gamma (n, λ) random variable and its density function is

fn(z) = λe−λz
(λz)n−1

(n− 1)!

Poisson Processes

Poisson Process: Let τi be an independent exponential (λ) random variables, S0 = 0, Sn =
τ1 + . . . + τn and Nt = max{n ≥ 0 : Sn ≤ t}. Then (Nt)t∈R≥0

is a Poisson Process with rate
parameter λ, or PP(λ). With distribution of rate λt

P (Nt = k) =
e−λt(λt)k

k!

Future Events: A PP(λ) counts the events starting from time 0. Suppose we reset the counter
at time s and start counting the future events, define this as

N
(s)
t = Ns+t −Ns for all t ≥ 0

Where (N
(s)
t )t≥0 is a PP(λ) and it is dependent of (Nu)0≤u≤s

Stationary Increments: A process (Nt)t≥0 is said to have stationary increments if Ns+t−Ns

is identically distributed for all s, i.e. the distribution does not depend on s.
Independent Increments: A process (Nt)t≥0 has independent increments if Ns1+t1−Ns1 and
Ns2+t2 −Ns2 are independent if (s1, s1 + t1] ∩ (s2, s2 + t2] = ∅.

So (Nt)t≥0 is a PP(λ) iff:

1. It has stationary and independent increments

2. Nt is Poisson (λt) random variable for all t.

Little o: A function f(x) is o(x) if limx→0
f(x)
x = 0.

So (Nt)t≥0 is a PP(λ) iff:

1. It has stationary and independent increments

2.
P (Nh = 0) = 1− λh+ o(h)
P (Nh = 1) = λh+ o(h)
P (Nh ≥ 2) = o(h)

2



Superpositioning and Splitting

Campbell’s Theorem

Looknig at a single arrival, ask if it occured before time s, with s ≤ t:

P (S1 ≤ s|Nt = 1) =
s

t

In general, the probability of k events happened before time s with the condition that n events
happened till time t

P (Ns = k|Nt = n) =

(
n
k

)(s
t

)k (
1− s

t

)n−k
Campbell’s Theorem: Let Sn be the even times for a PP. If Nt = n is given then the vector
(S1, S2, . . . , Sn) follows the distribution of ordered independent uniform variables (U(1), U(2), . . . , U(n)).
Consequently, the unordered set of arrival times {S1, . . . , Sn} has the same distribution as
{U1, . . . , Un}.

Nonhomogeneous Poisson Process

Counting Process: A counting process (Nt)t≥0 is a nonhomogeneous PP if

1. It has independent increments

2.
P (Nt+h −Nt = 0) = 1− λ(t)h+ o(h)
P (Nt+h −Nt = 1) = λ(t)h+ o(h)
P (Nt+h −Nt ≥ 2) = o(h)

Nonhomogeneous Poisson Process: Define

Λ(t) =

∫ t

0
λ(u)du

Then Nt is a Poisson Λ(t) random variable for any t.
Nt −Ns is a Poisson random variable with parameter Λ(t)− Λ(s) =

∫ t
s λ(u)du.

The superpositioning and splitting properties are true for nonhomogeneous Poisson processes as
well.

Event Times for Nonhomogeneous PP: Gives a binomial with n trials and a success
probability of Λ(s)/Λ(t).

P (Ns = k|Nt = n) =

(
n
k

)(
Λ(s)

Λ(t)

)k (
1− Λ(s)

Λ(t)

)n−k

Compound Poisson Processes

Suppose events occur according to a non-homogeneous PP(λ(t)). When event n occurs we incur
a random cost of Yn, which is independent and identically distributed for all n. Then the total
cost incurred up to time t is given by

Zt =

Nt∑
n=1

Yn

and (Zt)t≥0 is a Compound Poisson Process with

E(Zt) = Λ(t)E(Y1)

Var(Zt) = Λ(t)E(Y 2
1 )
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Continuous Time Markov Chains

CTMC: The continuous time stochastic process (Xt)t≥0 is called a CTMC if:

1. Each duration τn is an exponential random variable with rate qi > 0 which depends only
on state X̃n−1 = i the process leaves

2. The corresponding (embedded) discrete time process (X̃n)n∈N is a DTMC with p̃ii = 0
for all i.

Markov: A continuous time process (Xt)t≥0 has the Markov property if for any 0 ≤ s0 < s1 <
. . . < sn < s, any t ≥ 0 and any possible states i0, . . . , in, i, j we have:

P (Xs+t = j|Xs = i,Xsn = in, . . . , Xs0 = i0) = P (Xs+t = j|Xs = i)

Rate Matrix: or generator Q of the CTMV (Xt)t≥0 is defined through its elements

qij = qip̃ij , if i 6= j

qii = −qi = −
∑

j∈S,j 6=i
qij

Here qij is the jump rate from i to j.
Transition Matrix:

pij(t) = P (Xt = j|X0 = i)

Initial Distribution:
a
(0)
i = P (X0 = i)

P (t) has the following properties

1. pij(t) ≥ 0

2.
∑

j∈S pij(t) = 1 for all t ≥ 0

3. (Chapman-Kolmogorov Equations) P (t+s) = P (t)P (s), that is pij(t+s) =
∑

k∈S pik(t)pkj(s)

Theorem: P ′(0) = Q, that is

p′ii(0) = −qi = qii , p′ij(0) = qij for i 6= j

Backward and Forward Equations

Let P (t) be the transition matrix and Q be the generator of a CTMC. Then P (t) is the unique
solution of both the forward and backward Kolmogrov equation with initial conditions

P (0) = 1̂ that is pii(0) = 1, pij(0) = 0 for j 6= i

Forward Kolmogrov Equation:

P ′(t) = P (t)Q that is p′ij(t) =
∑
k∈S

pik(t)qkj

Backward Kolmogrov Equation:

P ′(t) = QP (t) that is p′ij(t) =
∑
k∈S

qikpkj(t)

Theorem: For finite state spaces the solution of both backward and forward equations is
P (t) = eQt.
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Transience and Recurrence

Define
ρij = P (Tj <∞|X0 = i) , mij = E (Tj |X0 = i)

Then we have: State i is

1. Transient if ρii < 1

2. Null Recurrent if ρii = 1 and mii =∞

3. Positive Recurrent if ρii = 1 and mii <∞

Theorem: A state i for a CTMC is recurrent iff the embedded DTMC is recurrent.
Theorem: Let (Xt)t≥0 be an irreducable CTMC. Suppose π̃ is a positive solution π̃ = π̃P̃ where
P̃ is the transition matrix of the embedded DTMC. Then the CTMC is positive recurrent iff∑

i∈S

π̃i
qi
<∞

Stationary Probabilities

Limiting Distribution: Let (Xt)t≥0 be an irreducible CTMV with limiting distribution πi.
The limiting distribution is the unique stationary distribution, that is the unique solution of
the global balance equations

πQ = 0,
∑
i∈S

πi = 1

iff the CTMC is positive recurrent.
Note: the stationary distribution π of a CTMC is different than the stationary distribution

π̃ of the embedded DTMC.
Theorem: If the detailed balance equations are satisfied, that is

πiqij = πjqji for all i 6= j, and
∑
i

πi = 1

then also the global balance equations are satisfied, so π is the stationary distribution.

First Passage Properties

Cost and Rewards
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Definitions

Examples

Density function: f(x)
Distribution of X: F (x) = P (X ≤ x) =

∫ x
−∞ f(x)dx

Expected value: E(X) =
∫∞
−∞ xf(x)dx
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